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Cat

Dog

Machine learning vs. Reinforcement learning

Learning patterns in a static dataset
Theoretical analog: “Learning from iid data”

Deploy

Hope for generalizationImplementation pipeline

Train on the dataset

Dog
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Machine learning vs. Reinforcement learning

“Learning interspersed with decision making”

Collect data 

Take an action in the 
environment

Improve model

Implementation pipeline

“Generalization?”

How do we formalize this?

How are decision making
and learning connected?  Many more questions!  



Today’s lecture
An introduction to RL

Part 1: A theoretical formulation
• Markov Decision Processes (MDPs)
• How do we define “optimal” behavior?

Part 2: Reinforcement Learning in the wild
• Practical challenges in RL
• Exploration vs. Exploitation

Part 3: Conclusion



Reinforcement learning formalism: Pavlov’s experiment

Learning by conditioning or “positive reinforcement”
The dog’s behavior is inherently reward (food) driven



Reinforcement learning formalism: reward maximization

Machine Learning
“Train model to minimizing loss”

Reinforcement Learning
“Train model to maximize reward”

For an autonomous car:
 for stopping/not stopping at the stop sign
 for hitting a pedestrian

+1/ −1
−1000

Hypothesis: Reward governs desirable behavior
Do you agree with this?



Reinforcement learning formalism: An example

State

Reward = +1.34Reward = +0.78Reward = −3.93Reward = +0.31

Action

Reward = +0.99



Reinforcement learning formalism: Markov Decision Processes

  a
 action 

s

 state 

s′ 

 next state 

• Learner is initialized in a state  sampled from an initial state distribution  over states .s ρ S

• Picking an action  transitions the learner to a new state  sampled from the distribution  
depending on the current state and action chosen.

a s′ P(s′ |s, a)

• Learner observes a reward  for picking the action  at state .r(s, a) a s

r(s, a)

• Repeat this process  times (an “episode”)H ⋯a1 a2 aH−1

r1 r2 rH−1

s1 s2 sH−1

a trajectory



Reinforcement learning formalism: Markov Decision Processes

  a
 action 

s

 state 

s′ 

 next state 

Learner’s objective: To find a policy which maximizes the value: the expected total reward.

V(π) = 𝔼[∑
H

t=1
rt(st, at) π]

r(s, a)

Learner’s defines a policy : Distribution over actions to play at a time. 

: probability learner picks action  at state  at time 
given the history 

(π)

πt(a |s, Historyt−1) a s t
Historyt−1 = {(s1, a1, r1), ⋯, (st−1, at−1, rt−1)}

Expectation is over the random trajectory  by “rolling-out” {s1, a1, s2, a2, ⋯, sH} π



A theory of RL



What can we tell about the optimal policy?

Optimal policy is the one which maximizes the expected cumulative reward,

π⋆ ∈ arg max
π

V(π)

Theorem 1. There exists an optimal policy  which is not a
function of, .

 is Markovian: picks actions only based on the current .

π⋆(a |s, Historyt−1)
Historyt−1

π⋆
t (a |s) (s, t)

V(π) = 𝔼[∑
H

t=1
rt(st, at) π]

Example:  It doesn’t matter how you got to the current board state while playing
 chess. Playing the best move only depends on the current board state,
 not the moves played to get there. 
 



Reinforcement learning formalism: discounted MDPs

V(π) = 𝔼[∑
∞

t=1
γt−1r(st, at) π]

In practice, often discounted / infinite horizon MDPs are considered.
Here, the objective is to maximize the discounted value,

The rewards are summed up with geometric decay,  where  is the discount factor.γt−1 γ

Rest of the lecture focuses on the discounted setting (results can be extended to the episodic setting as well)

 is the “effective horizon”. Rewards become insignificant after roughly  timesteps (analog of )Heff =
1

1 − γ
Heff H



Q functions

Definition 1. ( -function): Expected discounted reward starting from the state , playing the action  and 
           rolling out  subsequently,

Q s a
π

Qπ(s, a) = 𝔼[∑
∞

t=1
γt−1r(st, at) π, s1 = s, a1 = a]

These will be useful in characterizing the optimal policy.

Q function: 
“If I am at state  and played action  thereafter, how much reward 
would I collect if I continued playing after that?”

s a



Q functions
These will be useful in characterizing the optimal policy.

In this , playing the  
action results in a checkmate. 

s = board state a = red move
Qπ(s, a) = 1

Result of , playing  
depends on future moves.

s = board state a = orange move

Qπ(s, a) = 0.5 × 1 + 0.5 × 0 = 0.5

0.5

0.5

[draw]

[win]



Value functions

Vπ(s) = 𝔼a∼π(⋅|s)[Qπ(s, a) s]

Definition 2. ( -function): Expected discounted reward starting from the state  and rolling out  after,V s π

These will be useful in characterizing the optimal policy.

Value function: 
“If I am at state , how much reward would I collect if I 
continued playing my policy  after that?”

s
π



A recurrence for Q functions: Bellman equation

Theorem 1. ( -function): Recurrence relation for the -function of a policy ,Q Q π

Qπ(s, a) = r(s, a) + γ𝔼s′ ∼P(⋅|s,a)𝔼a′ ∼π(⋅|s′ )[Qπ(s′ , a′ )]

= 0.5 × 0.5 ×+

Qπ(s, a) Qπ(s′ , a′ 1) Qπ(s′ , a′ 2)

0 +

 
(only at last step)

r(s, a)



Characterizing the optimal policy for discounted MDPs

Theorem 2 (a). (Bellman optimality equation, part 1)
There exists an optimal policy which takes the form,

 where π⋆( ⋅ |s) = δa⋆, a⋆ = arg max
a∈A

Qπ⋆(s, a)

a1

s

Qπ⋆(s, a1) Qπ⋆(s, a2)

a2

Proof sketch. If  were known, what would be the optimal thing to do at a state?Qπ⋆

Optimal policy plays greedily with respect to .Qπ⋆

In words, the expert policy is deterministic and picks the action with the largest  valueQ



=

Qπ⋆(s, a)  (win)Qπ⋆(s′ , a′ 1) = 1  (draw) Qπ⋆(s′ , a′ 2) = 0

Characterizing the optimal policy for discounted MDPs

Optimal policy would always pick this action



Characterizing the optimal policy for discounted MDPs

Theorem 2 (b). (Bellman optimality equation, part 2) 
Plugging in the optimal policy from part 1 into the recurrence relation for ,Qπ⋆

Qπ⋆(s, a) = r(s, a) + γ𝔼s′ ∼P(⋅|s,a)[ maxa∈A Qπ⋆(s′ , a)]

…IF the MDP transition and rewards are known, which may not always be the case in practice.

There is a very simple algorithm (value-iteration) which can solve this recurrence relation approximately.



Reinforcement learning in the wild



Practical challenges in deploying RL

In practice, several challenges are present:

1. The reward functions and transitions are often not known explicitly: they must be learned.
2. State/action spaces can be massive: how do we generalize from a small number of interactions?
3. Rewards observed are often noisy or not aligned with the human’s objectives. How can algorithms be robust 

to this?

Exploration vs. Exploitation dilemma



Reinforcement learning in the wild: exploration

Want to explore the state space to discover new states which may be good. (Exploration)
At the same time want to pick actions greedily with respect to our current -function estimates. (Exploitation)Q

Simplest idea: 
-greedy exploration:  Exploit with probability  and explore a uniformly random action with probability ϵ 1 − ϵ ϵ

OpenAI gym Cartpole task
Keep the pole in the vertical position by moving the platform to the left or right

Algorithm: Deep Q-Network + -greedy explorationϵ



Reinforcement learning in the wild: A very brief survey
Value-based methods:
1. The RL agent trains a model (usually a neural network) to learn  
2. Uses “Bellman backups” to update the value function.
3. Usually used with a technique called “experience replay” to smoothen training.

Eg.
Deep Q-Network (DQN) [Mnih et al. 2015]
Double DQN [van Hasselt et al. 2015]

Qπ⋆

Policy-based methods:
1. The RL agent trains a model (usually a neural network) to approximate the policy 
2. Uses the “policy gradient theorem” to update the policy.
3. Usually implemented in continuous or large action-space environments.

Eg.
REINFORCE [Sutton 1999] 
Trust Region Policy Optimization (TRPO) [Schulman 2015] 
Proximal Policy Optimization (PPO) [Schulman 2017]

These approaches are being used extensively in training LLM reasoning models

π⋆( ⋅ |s)

https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://arxiv.org/abs/1502.05477
https://arxiv.org/abs/1707.06347


A shallow dive: LLM reasoning

reward = 1 if  
answer is correct

Initial state  prompt=

A sparse-reward MDP with deterministic dynamics (like 

Actions  tokens=
State  =



Policy Optimization methods (REINFORCE/PPO/GRPO)

We want to maximize . Here : weights of network. 

Why not just run some gradient-based optimizer? (SGD/Rmsprop/Adam?)
 
The Policy gradient theorem tells us how to.

V(πθ) = 𝔼πθ
[r(sH, aH)] θ



Policy Optimization methods (REINFORCE/PPO/GRPO)

Theorem 3. (Policy gradient theorem) Suppose learner’s policy is parameterized as . Then, 

, where,

πθ

∇θV(πθ) = 𝔼πθ
[Z]

Z = ∑
H

t=1
∇θlog(πθ(at |st)) ⋅ Qπθ(st, at)

Looks complicated, what is going on?

Nicely motivated by the REINFORCE algorithm:
1. Generate a trajectory by rolling out .
2. Compute       [stochastic gradient descent]

Where  is the value of  computed on the trajectory sampled from  // we may also run with minibatch size .

πθ
θn+1 = θn − η ⋅ ̂Z

̂Z Z πθ > 1



Policy Optimization methods (REINFORCE/PPO/GRPO)

Q1. To compute , we need an estimate of . How to do this? 
Different approaches do it differently. PPO uses generalized advantage estimation (GAE). GRPO uses leave-one-out 
estimate  

Q2. Every gradient update relies on generating a new trajectory from current policy .  
Reuse data from the past via importance weights: PPO / GRPO

̂Z Qπθ(st, at)

πθ

GRPO is one of the main drivers behind DeepSeek 
R1

Smaller DeepSeekMath models were also 
trained to SOTA performance via GRPO

https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300


Conclusion

1. Large Language Models: Reasoning models, alignment to reflect human preferences (RLHF) have been transformed by RL
2. Game solving: Current RL agents are 1000x better than the best humans at Chess, Go, Shogi, Poker and many other games
3. Autonomous driving and planning: Have already been deployed successfully in many major cities, including Austin.
4. Robotics: many challenging open problems, especially in grasping and manipulation.

2024 Turing Award: Sutton and Barto (Pioneers of RL)



Thank you!
Many interesting avenues for research:
Offline Reinforcement Learning,
Imitation Learning,
Safe / Constrained Reinforcement Learning,
Partially observed MDPs,
Meta RL,

In many interesting domains:
Healthcare,
Finance,
Geology and climate prediction,
Robotics + self-driving

You can reach me at: nived.rajaraman@berkeley.edu if you have any questions.

Some references: 
CS394R @UT: Reinforcement Learning: Theory and Practice
Reinforcement Learning: An Introduction (Sutton & Barto),
Algorithms for Reinforcement Learning (Csaba)
Bandit Algorithms (Lattimore and Csaba)
Lil’log (Lilian Weng’s blog)
Many many Huggingface tutorials…

mailto:nived.rajaraman@berkeley.edu
https://www.cs.utexas.edu/~pstone/Courses/394Rspring24/
http://incompleteideas.net/book/the-book-2nd.html
https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
https://tor-lattimore.com/downloads/book/book.pdf
https://lilianweng.github.io/

